Laminin α2 Chain-Deficiency is Associated with microRNA Deregulation in Skeletal Muscle and Plasma
نویسندگان
چکیده
microRNAs (miRNAs) are widespread regulators of gene expression, but little is known of their potential roles in congenital muscular dystrophy type 1A (MDC1A). MDC1A is a severe form of muscular dystrophy caused by mutations in the gene encoding laminin α2 chain. To gain insight into the pathophysiological roles of miRNAs associated with MDC1A pathology, laminin α2 chain-deficient mice were evaluated by quantitative PCR. We demonstrate that expression of muscle-specific miR-1, miR-133a, and miR-206 is deregulated in laminin α2 chain-deficient muscle. Furthermore, expression of miR-223 and miR-21, associated with immune cell infiltration and fibrosis, respectively, is altered. Finally, we show that plasma levels of muscle-specific miRNAs are markedly elevated in laminin α2 chain-deficient mice and partially normalized in response to proteasome inhibition therapy. Altogether, our data suggest important roles for miRNAs in MDC1A pathology and we propose plasma levels of muscle-specific miRNAs as promising biomarkers for the progression of MDC1A.
منابع مشابه
Deletion of integrin α7 subunit does not aggravate the phenotype of laminin α2 chain-deficient mice
Laminin-211 is a major constituent of the skeletal muscle basement membrane, exerting its biological functions by binding to cell surface receptors integrin α7β1 and dystroglycan (the latter is part of the dystrophin-glycoprotein complex). The importance of these molecules for normal muscle function is underscored by the fact that their respective deficiency leads to different forms of muscular...
متن کاملBortezomib Does Not Reduce Muscular Dystrophy in the dy2J/dy2J Mouse Model of Laminin α2 Chain-Deficient Muscular Dystrophy
Congenital muscular dystrophy with laminin α2 chain-deficiency, also known as MDC1A, is a severe neuromuscular disorder for which there is no cure. Patients with complete laminin α2 chain-deficiency typically have an early onset disease with a more severe muscle phenotype while patients with residual laminin α2 chain expression usually have a milder disease course. Similar genotype-phenotype co...
متن کاملAltered expression of the α7β1 integrin in human and murine muscular dystrophies
The α7β1 integrin is the primary laminin receptor on skeletal myoblasts and adult myofibers. It has distinct functions during muscle development and contributes to muscle structural integrity. We have studied this integrin in cases where expression of dystrophin or laminin are compromised. Immunofluorescence demonstrates an increase in α7β1 in patients with Duchenne muscular dystrophy and in md...
متن کاملProteasome inhibition improves the muscle of laminin α2 chain-deficient mice.
Muscle atrophy, a significant characteristic of congenital muscular dystrophy with laminin α2 chain deficiency (also known as MDC1A), occurs by a change in the normal balance between protein synthesis and protein degradation. The ubiquitin-proteasome system (UPS) plays a key role in protein degradation in skeletal muscle cells. In order to identify new targets for drug therapy against MDC1A, we...
متن کاملA Splice Site Mutation in Laminin-α2 Results in a Severe Muscular Dystrophy and Growth Abnormalities in Zebrafish
Congenital muscular dystrophy (CMD) is a clinically and genetically heterogeneous group of inherited muscle disorders. In patients, muscle weakness is usually present at or shortly after birth and is progressive in nature. Merosin deficient congenital muscular dystrophy (MDC1A) is a form of CMD caused by a defect in the laminin-α2 gene (LAMA2). Laminin-α2 is an extracellular matrix protein that...
متن کامل